martes, 24 de octubre de 2017

Esri Apps Go on the Road with the Oklahoma Highway Patrol

Esri Apps Go on the Road with the Oklahoma Highway Patrol

Workforce for ArcGIS and ArcGIS Online Help the Agency Keep Motorists Safe and Fight Crime

By Carla Wheeler
ArcWatch Editor
The green icons on the map shows the positions of OHP troopers.
When the Oklahoma Highway Patrol (OHP) joined the search for a man suspected of killing a sheriff's deputy earlier this year, the law enforcement agency used Esri's ArcGIS Online and Workforce for ArcGIS to properly position more than 100 troopers as the dragnet tightened.
"We were able to keep track of all of [the troopers] with Workforce for ArcGIS," said Captain Ronnie Hampton, commander of the OHP's Futures, Capabilities, and Plans Division. Hampton spoke about his agency's use of Esri technology during the Esri National Security and Public Safety Summit, held last July in San Diego, California.
All 800 OHP troopers have downloaded the Workforce for ArcGIS mobile app onto their smartphones and enabled location tracking, giving dispatchers the ability to see each on-duty officer's GPS location on a customized Dispatch Map in ArcGIS Online. Workforce for ArcGIS is included at no extra cost in an ArcGIS Online subscription. The troopers, plus about 90 dispatchers, have ArcGIS Online accounts.
Hampton said that during the manhunt for the shooting suspect on April 18, 2017, incident commanders could see where each officer was stationed in real time on the map. That locational information helped the commanders decide where to place troopers that were needed for the operation while a search perimeter was set up. "We were able to send in over 100 troopers, sealing off a two-mile area," Hampton said. "We could see the boots on the ground." The Oklahoma County Sheriff's SWAT team captured the suspect several hours later that day.
Other types of organizations typically use Workforce for ArcGIS to create projects and assign them to staff in the field. Often, the projects involve service, maintenance, and inspection requests and follow-ups to sales leads.
But OHP leadership realized the app could provide a critical, real-time view of where all on-duty troopers are located as they patrol more than 111,000 miles of roads and highways, waterways, and the state capitol grounds. Knowing each trooper's position—which appears on the Dispatch Map as a green icon next to the officer's call number—gives communication center dispatchers the ability to instantly see where all the officers are stationed and, if possible, send the closest officer to the scene of an accident or other incident.
Until Workforce for ArcGIS was launched throughout the organization in the summer of 2016, dispatchers working in OHP's 13 communications centers were only responsible for dispatching troopers assigned to their specific district. For example, if a traffic collision occurred in the district covered by Troop A, only an officer from Troop A would be sent to the scene—even if an officer in Troop B was 20 miles closer.
Captain Ronnie Hampton has been helping to spearhead the use of GIS technology at the OHP.
"Prior to the [launch] of Workforce, [the dispatchers] would never have known that unit [in another district] was even working because they were focused on their own troop areas," Hampton said.
Now, dispatchers can summon anyone on staff—from a marine enforcement officer to OHP chief Ricky G. Adams—to respond to an incident based on their present location. "Our chief requires everybody, including himself, to use Workforce as they commute to work," Hampton said. "So, everyone in the entire agency is an assignable asset. [Adams] is very much a champion of technology and keeping people safer."
Last year, OHP conducted a 90-day test to find out how many hours and miles in travel time would be saved by using Workforce for ArcGIS to make dispatch decisions. In responding to 28 collisions and 23 cases where motorists needed assistance, the test showed a savings of 889 miles and 14 hours in travel time, Hampton said. "Mileage is a savings of fuel. Hours [saved mean] a quicker response for the public," he said.
The greatest benefit for Oklahomans is the faster response times, especially in rural areas, Hampton said. "The people that benefit from this are the public, by being able to have someone at the scene in 3 or 4 minutes versus . . . 45 or 50 minutes," he said. "That's where your hours of savings come in."
Following the test's success, OHP made Workforce for ArcGIS and ArcGIS Online available to all troopers last August. All officers downloaded the app onto their OHP-issued Samsung Galaxy S5 smartphones, via the Google Play store. (The app is also available from the Apple App Store and Amazon.)
Officers also can see the locations of their colleagues using a Trooper Map in their patrol cars.
Today, staff in all 13 communications centers use one comprehensive statewide Dispatch Map in ArcGIS Online to keep track of the officers' locations. The dispatchers can use the built-in Near Me widget to find the officer closest to the scene of an incident. They also can turn on layers in the map to obtain weather information; traffic conditions; and the locations and phone numbers of police, fire, and ambulance stations.
To create the Dispatch Map, the feature data service layer from Workforce for ArcGIS that contains the officers' locations and the green icons was added to ArcGIS Online. Widgets such as Near Me, Basemap Gallery, Filter, Legend, and Measurement were added using Web App Builder for ArcGIS. Weather data from the National Oceanographic and Atmospheric Administration (NOAA) also was brought in, along with traffic information from Esri's World Traffic Service. The GPS coordinates for police, fire, and ambulance agencies in Oklahoma and contact information, such as the phone numbers for each agency, were also added to the map.
Most of the information and capabilities in the Dispatch Map are available to on-duty officers using the Trooper Field Map in ArcGIS Online, accessible via computers mounted in their patrol cars. The troopers also have access to useful links on the toolbar, so they can retrieve information on court dates, for instance, for each of Oklahoma's 77 counties.
OHP also uses Esri Story Maps apps to tell stories about important issues such as motorcycle safety.
Troopers also can use tools in ArcGIS Online to set up buffer zones after an accident. For example, a trucker suffered a heart attack and crashed his vehicle into the beam of a highway underpass, causing a sulfuric acid spill, Hampton said. An OHP lieutenant on the scene used the Create Buffers tool to establish a zone with a half-mile radius around the incident. He then shared the map with colleagues so they could block off the area to traffic and onlookers.
Workforce for ArcGIS and ArcGIS Online also are providing situational awareness for OHP officers. During the pursuit of a suspect on a rural road, a trooper on duty 80 miles away, in another county, could see where the pursuing officer was located on the Trooper Field Map. When the trooper turned on satellite view, he noticed that the officer was coming up to a T-intersection and radioed him a warning to slow down. After the suspect veered off into a cow pasture, the trooper from the other county told the pursuing officers where there were openings in the pasture's fencing that they needed to blockade. "[The trooper] knew where the likely escape points were," said Hampton, adding, "We caught that guy."
Hampton said ArcGIS Online and Workforce for ArcGIS are being embraced in his department, especially by the younger officers who grew up with technology. "I've had other police agencies ask, 'How do your troopers feel about people being able to see [their location on a map]?' Some of our older troopers were resistant at first, but our younger troopers are super excited," Hampton said. "It used to be, we had to rely on that person who needed help to give out his physical location. Now, all he has to do is say, 'I need help,' and everybody can see where he's at."
OHP also is putting other Esri technology to good use for public safety, including Esri Story Maps apps. One story map created by the law enforcement agency showed where in Oklahoma motorcyclists had been killed or injured in 2015, and it presented statistics on how many of the riders killed or severely injured had been wearing helmets. Fifty-six percent of the people killed in 2015 in motorcycle accidents were not wearing helmets, according to the story map.
OHP plans to dispatch drones to capture imagery of traffic accident scenes, which would reduce the amount of time roads are closed due to investigations.
Story maps also may be used in the future to document homicide cases that stem from traffic collisions caused by people driving while intoxicated, Hampton said. "Fast-forward a year, and the [district attorney (DA)] may be in trial and has to explain to the jury what has happened," he said. "If we start collecting information from the time the 911 call comes in, and we document everything in story maps, then it's easier for our investigator to present a case to the DA with little to no effort because [all the information] is there. Then the DA can take…that [story] and present it to the jury."
In the coming months, OHP also plans to process imagery from some traffic collision scenes using Esri's Drone2Map for ArcGIS. Hampton said that OHP plans to initially acquire 13 drones to capture imagery of accidents that block busy roads. "We can't control cleanup, but we can control how much time we keep the road closed [while] doing the accident reconstruction," Hampton said. Rather than walking the scene and taking photos and measurements, the drone would take images of the accident aftermath. "With a drone, we can thoroughly document and collect video and photographs of a crash scene in about six minutes," he said.
OHP would use Drone2Map for ArcGIS to process the imagery and create products for use in investigations and, if necessary, court cases. "We can take a frame of a video and produce a two-dimensional picture. We can take still photography we shot with the drone and produce the two-dimensional picture," Hampton said. "If that case needs to go to court or if we want to revisit the scene the way we found it later, now we can watch the video of what we flew two years ago. If that case ends up being prosecutable, one of the things Drone2Map allows us to do is to create a 3D model. [You may] have seen these CSI [crime scene investigation] shows where they are walking a jury through an animation. Why animate something when you can actually take them back and let them fly through the scene?"

Get Ready, Get Set for GIS Day!

Get Ready, Get Set for GIS Day!

Seven Steps to Take to Prepare for the Annual Celebration

By Joseph Kerski
Esri Education Manager
  5  8
GISday.com includes a map that shows the locations of workshops and other events around the world, along with resources you need to host your own celebration.
What better way to celebrate GIS Day than to host or attend an open house or a workshop that demonstrates the power of mapping.
This year's worldwide GIS festivities will occur November 15, and already there are hundreds of events planned in North America, South America, Africa, Asia, Europe, Australia, and New Zealand. For example, the Center for Spatial Studies at the University of Redlands in California will host an open house with hands-on GIS demonstrations and games.
There are at least seven things you can do to get your organization involved in GIS Day or personally get in on the action:
Go into the field on GIS Day and collect data on water quality, the weather, tree species, or other variables. Then map your data using Survey123 for ArcGIS, or Collector for ArcGIS.
1. Be aware! What is GIS Day? It's a day set aside to provide an international forum for GIS technology users to demonstrate real-world applications that are making a difference in our society. The first formal GIS Day took place in 1999. Esri president and cofounder Jack Dangermond credits Ralph Nader with being the person who inspired the creation of GIS Day. He considered GIS Day a good initiative for people to learn about geography and the uses of GIS, and he wanted GIS Day to be a grassroots effort, open to everyone to participate.
2. Host an event. A school, community or technical college, university, nonprofit organization, library, private company, or government agency can sponsor a workshop, open house, map gallery, showcase, career fair, or presentation on November 15 or anytime during GIS Day week, which this year is November 12–18. Post an announcement about your event on www.gisday.com.
Host a workshop and demonstrate how to use ArcGIS Online, ArcGIS Community Analyst, Esri Story Maps apps, or other GIS technology.
It doesn't have to be a huge event, but rather something where you open a section of your organization to the community; other departments in your organization; or local schools, universities, community colleges, and clubs to showcase what GIS is and what you are doing to make a positive difference in the world using the technology. Still stumped for ideas? See what other organizations have done for GIS Day. [PDF]
3. Show what GIS can do! If you don't work for an organization that uses GIS but you just want to promote the technology, give a workshop using some easy-to-use yet powerful GIS tools, such as Survey123 for ArcGIS for collecting data in the field; ArcGIS Online to show ocean currents, earthquakes, or demographic characteristics in your own community; and web mapping apps, such as the ChangeMatters viewer, to compare imagery over time. You also can create or showcase some Esri Story Maps apps.
Share maps with your GIS Day audience such as this one about international migration.
4. Attend an event! View the map on the GIS Day website to find an event near you that you can attend. Invite a colleague at work or a friend.
5. Discover the resources on the GIS Day website. Over the past year, the website has been substantially improved. You will find story maps, hands-on activities, videos, strategies on how to work with students of all ages, information about how to work with the public, and much more.
6. Get some geoswag! The first 250 organizations that register their event for this year's GIS Day will receive a box of wonderful GIS-related items, such as stickers, books, and shirts, which can be used to promote their event.
Examine the diverse array of maps, apps, and other geographic content available in the Esri Living Atlas of the World.
7. Be a GIS champion! We want to highlight organizations from around the world that are GIS and GIS Day champions and acknowledge them for the good things they are doing. The stories will be featured on GeoNet and in ArcWatch and other outlets. Videos are welcome too! Please send your suggestions on organizations that should be included in the stories to gisday@esri.com.
For more information about GIS Day, visit the GIS Daywebsite. Follow GIS Day on Twitter @GISday or visit the GIS Day Facebook page.

miércoles, 4 de octubre de 2017

The Science of Where Comes to Life at the Esri User Conference

The Science of Where Comes to Life at the Esri User Conference

By Citabria Stevens, ArcNews Editor
and Carla Wheeler, ArcWatch Editor
  4  5

Taylor Shellfish Farms uses GIS to manage aquaculture operations in Samish Bay, Washington, and other locations. Photo courtesy of Taylor Shellfish Farms.
Taylor Shellfish Farms of Shelton, Washington, takes The Science of Where to the tidal flats of Puget Sound to sustainably produce such delicacies as Manila clams, Pacific and Shigoku oysters, mussels, and geoduck.
In Canada, Shock Trauma Air Rescue Service (STARS) uses The Science of Where to manage thousands of annual missions to transport, via helicopter, critically ill and injured patients from mostly rural areas to hospitals best suited to treat them.
The Chesapeake Conservancy in Annapolis, Maryland, puts The Science of Where to work to prioritize and plan restoration and conservation efforts in the Chesapeake Bay.
And The Science of Where gives Oakland County, Michigan, the ability to share information with government staff and the public about topics as diverse as economic development, delinquent taxes, and opioid addiction.

STARS transports patients by helicopter to medical facilities. Photo courtesy of STARS/Mark Mennie.
To accomplish all this, The Science of Where must be versatile, agile, powerful, and whip smart, which leads to the obvious questions; What is this science that these four organizations depend on to do critical work, and where does it derive its capabilities from?
"Simply stated, it's the science of geography and the technology of GIS," said Esri president Jack Dangermond, during his opening keynote at the 2017 Esri User Conference (Esri UC). "The Science of Where is a framework for applying science to almost everything. That is a very powerful notion for me."
The Science of Where was the theme of the conference, which drew nearly 18,000 people from around the world to San Diego, California, last July. But behind the phrase is a system of understanding driven by science, technology, and people.
Dangermond called GIS a metascience underpinned by geography, data science, modeling, analytics, visualization, and computer science. "At its heart, [GIS] is a system of insight where we can do spatial analytics, look at relationships, and approach problem solving in a holistic way because this platform integrates people and processes and all the data about them," he said. "You, ladies and gentlemen, are working with all the dimensions of information and using the power of where to integrate it."

Esri president Jack Dangermond called GIS a “metascience.”
The Science of Where also brings people into the equation. Posters that hung in the hallways of the San Diego Convention Center said, "I Am The Science of Where," and several conference-goers echoed that idea by Tweeting "Yes I am #TheScienceOfWhere" on Twitter.
Dangermond underscored the importance of people working together to confront problems such as pollution, loss of nature, climate change, food shortages, social conflict, and natural disasters. "We are going to have to do everything we possibly can to better understand and…collaborate to address [these issues]," Dangermond said, adding that GIS is only part of the equation. "Our technology is really nice, but from my perspective, it's about five percent of the deal. It's really collaboration, organization, and good thinking—the kinds of things all of you do—that make your system successful."
The challenges may be great, but Dangermond says he's an optimist. "It's a high aspiration," he said. "Can we make a difference with our work and turn this around? My view is, yes,we can!"

Practicing The Science of Where in Aquaculture


Taylor Shellfish Farms created a story map to illustrate where the oysters, clams, mussels, and geoduck are grown.
Where does The Science of Where make a difference? In industries such as aquaculture, where Taylor Shellfish Farms is using GIS to make farming practices more sustainable.
While many organizations at the Esri UC have used GIS for decades, Taylor Shellfish Farms has only been using Esri technology for about one year. However, location information has always been important to this fifth-generation, family-owned business, which grows shellfish on 12,000 acres of leased or owned tideland in Washington state.
The Taylor family and employees, represented at the Esri UC Plenary Session by Nyle Taylor and Erin Ewald, use GIS to map their 30 farming sites, analyze farming conditions, identify the best growing areas for different shellfish species, and conduct surveys to meet environmental requirements.

Nyle Taylor holds up a geoduck.
"When I started at Taylor [Shellfish Farms], we were using hand-drawn maps, and I knew there had to be a better way," said Erin Ewald, assistant director of regulatory and environmental compliance for the business. "So Nyle and I are modernizing our company through GIS."
They didn't start small. Since September 2016, the company has adopted ArcGIS OnlineArcGIS ProEsri Story MapsDrone2Map for ArcGIS; and multiple mobile apps, including Explorer for ArcGISSurvey123 for ArcGISCollector for ArcGIS, and Workforce for ArcGIS; for what Ewald describes as a "digital transformation."
The company, which also owns and operates three oyster bars in Seattle, started shellfish farming in 1890. The business was founded by Nyle's great-great grandfather, J. Y. Waldrip, who first dabbled in gold mining and agriculture before diving into aquaculture in the Puget Sound. "He found our native Olympia oyster and started farming those," said Taylor, farm project coordinator for Taylor Shellfish Farms. Today, the company has expanded from its first site in Totten Inlet to locations such as Skookum Inlet, Hood Canal, and Oakland Bay.

This heat map shows the concentration of farms operated by Taylor Shelllfish Farms.

Ewald used Survey 123 for ArcGIS to create this survey in the Khmer language.
"In Samish Bay, the tide can recede over a mile to expose large, sandy tidal flats rich with nutrients. We grow oysters, clams, and geoduck here," Taylor told the Esri UC audience. "While all you geogeeks at this geoconference may have thought [that] this is [pronounced] 'geoduck,' it's pronounced 'gooey duck,'" he said, eliciting laugher from the crowd.
Taylor then lifted a live geoduck from a box. "The geoduck is a Pacific Northwest native and the world's largest burrowing clam. In the wild, they can live more than 100 years and weigh more than 12 pounds," Taylor said. "This may be the only time a geoduck is a copresenter on the User Conference stage."
How does GIS help Taylor Shellfish Farms grow geoducks and other ocean edibles sustainably and more efficiently? Ewald and Taylor said it's by using mobile apps like Explorer for ArcGIS, which lets staff bring real-time business, operations, and environmental data onto the farms even when there is no cell phone coverage. Rather than deal with paper maps, which can get sopping wet, the farm managers can view a map of the farming area on their smartphones. They can even add information to the map using a sketching tool, for example, to suggest areas where the farm might expand.

STARS uses GIS to help plan missions, which often take helicopters to rural areas to pick up patients. Photo courtesy of STARS/Mark Mennie.
"This ability to take a wealth of GIS data into the field—like our farms and priority habitats and substrate types—helps us understand the environment we are working in," Ewald said. "As we combine this new understanding with generations of experience in a suitability analysis, we use this data to identify optimal growing areas for our different shellfish species."
Using Survey123, Ewald can quickly configure digital surveys that workers can use to collect environmental and other data for regulatory agencies. For example, she created a short, easy-to-use herring spawn survey that crews can use to simply check off whether herring spawn are present where farm activities, such as dredging, harrowing, tilling, or bed preparation, are taking place. "Herring are a critical food source for Washington state's endangered salmon, and we survey the beach so we ensure [that] our actions don't disturb their spawning sites," she said. Because Taylor Shellfish Farms employs multilingual crews, Ewald creates surveys in Khmer and Spanish in addition to English.
Taylor Shellfish Farms recently began mapping farm beds using imagery captured by a drone and processed using Drone2Map. Bed layouts for where to plant the shellfish can be designed in the office using the processed imagery. "Laying out farm beds prior to using Drone2Map was a boots-on-the ground approach, where our farmers paced lines through the mud," Taylor said. "Drone imagery revolutionizes how we do it. Using a digital terrain model, it's easy to see the natural drainages in the beach. We can build our beds around these to avoid our seed being washed away."

Saving Lives with The Science of Where


ELC uses ArcGIS GeoEvent Server to provide dynamic SOPs on a map.
STARS, a Canadian nonprofit organization that dispatches helicopters to transport seriously ill and injured people, uses The Science of Where to better manage its response to emergencies.
STARS mainly operates in remote areas of Alberta, British Columbia, Saskatchewan, and Manitoba. STARS helicopters are dispatched to medical emergencies, such as heart attacks and strokes, or to traffic, recreational, and industrial accidents.
While the rescues are often in the news, much of the critical work at STARS goes on behind the scenes at the organization's Emergency Link Center (ELC), a 24-hour medical communications and dispatch center. That's where Kevin Hatch and Paul Wiles work, bringing the organization technology that speeds up response times, better manages a coordinated and appropriate response to each situation, and tracks the helicopters during missions.
For example, GIS technology is being used to automate the standard operating procedures (SOPs) that STARS follows to determine whether a helicopter, rather than a ground ambulance, needs to be sent to an incident. "We use a dynamic set of SOPs to tell our dispatchers precisely what they need to know so they can make that decision," Hatch, a telecommunication specialist for STARS, said during the Esri UC Plenary Session presentation.

Cassandra Pallai from the Chesapeake Conservancy showed the audience how its ultra-high-resolution land cover dataset for the Chesapeake Bay watershed can help determine where restoration projects might be most beneficial for cleaning up the bay.
ELC uses ArcGIS GeoEvent Server to provide dynamic SOPs as each incident unfolds, from what procedures to follow before deciding to send a helicopter to what to do as the mission unfolds once the craft is dispatched. A model created with ArcGIS GeoEvent Manager generates the dynamic SOPs. "It tells us what we need to know and when we need to know it," said Wiles, a GIS and telephony technologist for STARS. "This improves efficiency, reduces human error, and helps us ensure [that] the best lifesaving decisions are made."
Using the case of a one-car rollover in Banff National Park in Alberta as an example, Hatch illustrated how dynamic SOPs can also help once a mission is under way. A decision was made to send a helicopter to the scene where two people were trapped in a vehicle and a third person was ejected.
"Now that we've assigned a resource, GeoEvent [Server] has created a new feature [that] uses the automatic vehicle location (AVL) of the helicopter," Hatch said. "Using factors such as the status of the aircraft and the base it was dispatched [from], the SOPs are instructing the dispatcher to perform actions such as giving updates to our pilots and air medical crews."
ArcGIS GeoEvent Server will even alert a dispatcher if an action has been missed. "Our dynamic SOPs are responsive," Hatch said. "In this case, the dispatcher neglected to confirm whether a landing zone had been secured."
A missed landing zone alert popped up in red on a map. "Because our SOPs can adapt," said Hatch, "GeoEvent [Server] alerts us, and the dispatcher is instructed to secure the missing landing zone."
The ELC is also using GIS to spatially analyze historical flight data to study where STARS flies (and where it doesn't) and how those patterns change over time.
Hatch and Wiles showed photographs of some of the patients who had been transported by STARS. "When we talk about dynamic SOPs, mapping, spatial analysis, innovation, and engagement, what we are really talking about is improving the tools our team uses to help us make more success stories," Hatch said. "Because at the end of the day, it's about the patient."

The Science of Where Pollution Gets Cleaned Up


Chesapeake Conservancy uses raster functions in ArcGIS Pro to preprocess and classify raw imagery, turning it into land cover that helps with management tasks like green infrastructure planning.
Beset by pollution, population growth pressures, and changes in land use, the Chesapeake Bay's health suffered for many years. But over the last four decades, efforts by governmental agencies and the nonprofit Chesapeake Conservancy have brought the bay back from the brink of destruction.
"But we still have a long way to go," said Jeff Allenby, director of conservation technology for the Chesapeake Conservancy.
The Chesapeake Bay is the largest estuary in the United States and the third largest in the world, stretching 200 miles along the mid-Atlantic coast. The watershed that feeds into it is home to more than 18 million people and occupies more than 64,000 square miles in six states.
The conservancy works with cities, counties, and states to restore the Chesapeake Bay to health. It provides geospatial analysis tools and high-resolution aerial imagery and elevation data to its partners to better target conservation efforts.
In an 18-month period, conservancy staff worked with the Chesapeake Bay Program and partners, such as the University of Vermont Spatial Analysis Laboratory and WorldView Solutions Inc., to create an ultra-high-resolution land-cover dataset for the watershed. It was released in December 2016.

Phil Bertolini challenged his team to expand the use of GIS beyond the knowledgeable few and build up a new generation of users among municipalities, businesses, and the public.
"This data is fundamentally changing the way that managers think about conservation and restoration," Allenby said. "It's providing us with actionable information and refining the way that we can evaluate the benefits of individual projects."
Constantly updating the data, however, would be costly and time-consuming. So, using ArcGIS Pro, the Chesapeake Conservancy used imagery from the National Agriculture Imagery Program (NAIP) to create a new false-color image of the region and segment it, streamlining the entire land classification workflow into one processing model.
"ArcGIS Pro is reducing the amount of time that it takes us to go from raw imagery to land cover," Allenby told the audience.
"Having this capacity at our fingertips is incredibly exciting," said Cassandra Pallai, the conservancy's geospatial program manager.
To classify more than two terabytes of the most recent NAIP imagery, it would take the conservancy just over 150 hours instead of more than 2,500 hours. Additionally, the conservancy can classify land cover in just one local study area or, using ArcGIS Image Server in the Microsoft Azure cloud, create land-cover classifications for an entire landscape. This enables the conservancy and its partners to better understand how development in one area might affect local streams and rivers and, thus, the entire bay.
All necessary pollution control measures in Chesapeake Bay must be in place by 2025. So it's imperative that counties evaluate the impact that their developments can have on water quality and determine where local water quality monitoring or restoration might be most beneficial.
"Once we know our priorities, we can create customized action maps for our local partners," Pallai said. "Together, Image Server and the processing capacity of the cloud are enabling us to spend less time making the data that we need to meet our goals and more time on conservation."

Extending The Science of Where


Oakland County’s Medical Main Street map, which highlights the county’s thriving and growing health care businesses, markets the area as a destination for medical services.
Oakland County, Michigan, is keeping pace with changes in its own municipalities by expanding GIS use beyond the knowledgeable few. The idea behind this is that the county can build a map or app once, pay for it once, and allow everyone to benefit.
"The recent recession . . . deepened our commitment to shared services," said Phil Bertolini, Oakland County's deputy county executive and chief information officer. "Through Web GIS, we've grown our distributed GIS model by combining the value of our many collaborative systems of record [into] a powerful system of systems, which allows us . . . to branch out to all our municipalities, businesses, and citizens."
Bertolini showed the audience the county's Access Oakland Open Data Portal, which uses maps to promote certain economic programs and attract new businesses to the area. The Medical Main Street map, for example, underscores Oakland County's thriving—and growing—health care industry, and Global Oakland markets southeastern Michigan as an advantageous destination for businesses from around the world to open new locations.
"To date, we have more than 400 new businesses located in Oakland County with an economic investment of $3.9 billion," said Bertolini.
The success of these open data initiatives spurred Bertolini to see if Oakland County could go even further. He challenged his team to build up a new generation of GIS users countywide.
"What was our approach?" asked Tammi Shepherd, Oakland County's chief of application services. "Grow our tree by finding and inspiring just one user, who would then add hundreds more."
Social media managers incorporated easy-to-make and colorful maps into their Facebook, Twitter, and blog posts. A suite of apps was created to simplify how the tax administration department stakes notices on the properties of citizens who have not paid their taxes.
An internal app was created for the equalization division that displays all the details about county properties, including parcel acreage, wetlands, and historical imagery. This app was then added to a suite of standard product offerings, making it available to any municipality in the county to use and customize.
"We are engaged in the most important work of our careers," Bertolini said. "Two years after challenging my team, we have hundreds more users in a distributed GIS model across our county departments and municipalities."
Watch the presentations from the Esri UC Plenary Session.